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Abstract 

We study the general geometrical structure of the coadjoint orbits of a semidirect product formed 
by a Lie group and a representation of this group on a vector space. The use of symplectic induction 
methods gives new insight into the structure of these orbits. In fact, each coadjoint orbit of such 
a group is obtained by symplectic induction on some coadjoint orbit of a “smaller” Lie group. 
We study also a special class of polarizations related to a semidirect product and the validity of 
Pukanszky’s condition for these polarizations. Some examples of physical interest are discussed 
using the previous methods. 0 1998 Elsevier Science B.V. 
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1. Introduction 

Polarized coadjoint orbits of a Lie group G, are good candidates for geometrically quan- 
tized phase spaces. They also play a central role in representation theory, more specifically 
in the context of Kirillov’s “orbit method”. In the case of exponential groups, Pukanszky 
showed [lo] that the orbit method leads to irreducible unitary representations of G if and 
only if the polarization satisfies a certain condition, known as Pukanszky’s condition (see 
Lemma 6.2 (1) with h = e). This method has been adapted to the case of complex polariza- 
tions, especially for solvable Lie groups: Auslander and Kostant [7] showed that Pukanszky’s 
condition was needed in order to guarantee the irreducibility of the representations obtained 
via holomorphic induction from the real polarizing subgroup D c G (see below). 
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In its initial formulation, Pukanszky’s condition means that the coadjoint orbit in question 
contains an affine plane, constructed out by the polarization. Only recently [2,3], it has been 
realized that validity of Pukanszky’s condition is equivalent to the fact that the corresponding 
coadjoint orbit is symplectomorphic to a modified cotangent bundle, obtained by symplectic 
induction from a point. The physical consequences of this symplectomorphism have been 
studied in the previous references for the coadjoint orbits of the Poincare group, which is a 
semidirect product. 

Our aim is to give, on the one hand, a detailed analysis of the geometrical structure 
of the semidirect product coadjoint orbits, for the case where this product is formed by 
a Lie group K and a representation p : K + GL(V) on a vector space V [l 11. On the 
other hand, we consider this very interesting geometrical structure in the framework of 
Pukanszky’s condition. Summarizing the results of this article, we mention the following 
three points: 
- the coadjoint orbits of a semidirect product present several analogies with the cotangent 

bundles and under certain conditions they are in reality cotangent bundles of K-orbits in 
the dual V* of the vector space V; 

- the validity of Pukanszky’s condition for a special class of polarizations of the semidirect 
product G = K xp V is equivalent to the validity of the same condition for “smaller” 
polarizations associated to the homogeneous part K; 

_ the coadjoint orbits of the semidirect product G = K xp V are obtained by symplectic 
induction on coadjoint orbits of appropriate subgroups of the homogenous part K. 

In what concerns the third point, a variant of the symplectic induction we are using here 
gave recently the same result [8]; see also [ 171 for a more general treatment in the context 
of symplectic Mackey’s theory. 

We discuss finally three examples of semidirect product and we apply the previous formal- 
ism in the geometrical study of their coadjoint orbits. The semidirect products in question 
are the special Euclidean, the Galilei and the Bargmann group, three Lie groups whose 
coadjoint orbits are, respectively, related to geometrical optics, polarization of light and to 
the dynamics of non-relativistic particles. 

2. The semidirect product 

In this section, we fix the notation concerning the semidirect product following 

[Ill. 
Consider a Lie group K with Lie algebra 1; let (K, f) F+ K . f be the coadjoint rep- 

resentation of K on f *, the dual of the Lie algebra f , and (A, f) H A . f its derivative, 
KEK,AE~,~EI*.I~~:K + GL(V)isarepresentationofKonthevectorspaceV, 
then we note P(K)U = K . 21, K E K, u E V. We note accordingly by (K, p) H K . p the 
contragradient representation of p, p E V* and by (A, v) H A v and (A, p) H A . p the 
corresponding derivative representations of f on V and V*. 

We form now the semidirect product G = K x p V. As a set G = K x V and the group 
operation in G is given by 
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(K, v) . (h, u) = (Kh, K . rd + U) v(K, V), (h, u) E G. (2.1) 

When the representation p is understood, we write simply G = Kc-c V. 
The Lie algebra of this group is g = f $ V (as a vector space) and the Lie algebra structure 

is given by the bracket 

[(A, a), (B, 611 = ([A, Bl, A . b - B a) V(A, a>, (B, b) E B. (2.2) 

We will note g = f eP V. 
By identifying the dual R* of B with f * $ V*, we can express the duality between a and 

(7* as 

w(c) = f(A) + ~(a) VP = (f, P) E (1*> t = (A, a) E n (2.3) 

and the adjoint and coadjoint representations of G on t-~ and n*, respectively, by the following 
relations: 

Ad(K, v)(A, a) = (Ad(K K a - p’(Ad(K)A)u) V(K, u) E G, (A, a) E g, 

(2.4) 

Coad(K, u)(f, p) = (K . f + K . p 0 u, K . p) V(K, v) E G, (f, P) 6 (1*, (2.5) 

where p 0 u is the element of f * defined by 

(pav)(A)=p(A.v)=-(A.p)(u) VAE~, peV*, UEV. (2.6) 

For p E V* we denote by K, the isotropy subgroup of p formed by those K E K such 
that K . p = p. It is clear that the Lie algebra of KP is given by the vector space f, = 
{A E f 1 A . p = 0). Then if we define the linear map rP : f -+ V* by 

rp(A) = -A.p VAE~, (2.7) 

we have the equality f P = ker rP. 
We express now the element p 0 v E f * in terms of the map rP. The dual ri : V -+ f * 

of rP is given by the relation $(u)(A) = t,(A)(u) = -(A . p)(v), and so r;(u) = 
pov, vpEv*,vvEv. 

Let now fs be the annihilator of f,; then if ii : f * + f T, is the projection, i, : f, c, f , 
we have f; = ker i;. The following is a useful lemma from [ 111, giving a characterization 
of the annihilator f ; in terms of the linear map rP. 

Lemma 2.1. t i = im rp*. 

Proofi We give here a different and simple proof using Lagrange multipliers. Indeed, we 
have f P = r;’ (0) c f and the element A E f P is a critical point of the map i;lf : f ,, + R, 
for f E P’(f), if and only if there exists an element u E V** S V such that A is a critical 
point of f - u o rP. Choosing f E f * (and therefore linear), we find that f E t g if and only 
if3uEV:f=uorp=pOu. 0 
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3. Orbits - isotropy subgroups 

We recall now the structure of the coadjoint orbits of a semidirect product studied by 
Rawnsley [ 111, and we exploit in more detail the structure of the isotropy subgroups with 
respect to the coadjoint representation for the semidirect product. According to [I 11, the 
coadjoint orbits of a semidirect product are classified by the coadjoint orbits of “little” 
groups, which are isotropy subgroups of its homogeneous part (see also [4]). In fact, fibre 
bundles having these coadjoint orbits as fibres, completely characterize the coadjoint orbits 
of the semidirect product. As we shall see later on (Section lo), the little-group coadjoint 
orbits play an even deeper role for the geometrical structure of the corresponding semidirect 
product coadjoint orbit. 

Letnow 2 =0pK, p E V* be an orbit of K in V* with respect to the representation p*. 
A bundle of little-group orbits over 2 is a fibre bundle n : Y + Z such that each fibre 
YP = n-’ (p) be a coadjoint orbit of the isotropy subgroup K,. 

We construct the bundle of little-group orbits as follows. Consider elements p E V*, 
q5 t f ;“, and let Z, Y, be the corresponding orbits under the actions of K and KP, respectively, 

z=a,K, YP=$ . There is a left action of the isotropy subgroup K, c K on the product 
K x Y, given by 

h (K, C$) = (Kh-‘, h . 4). (3.1) 

We define the bundle of little-group orbits Y as the quotient Y = (K x Yp)/Kp, i.e., Y 
is the fibre bundle associated to the principal bundle K + Z with respect to the coadjoint 
action of KP on YP. The group K acts on Y as follows. If $!I E YP, then for K E K we define 
the point K @ E YK.P as 

(K . $)(A) = $(Ad(K-‘)A) VA E f,.,. (3.2) 

Consequently, the following choice to represent the points of Y (K,-orbits in K x YP) is 
appropriate: KP (K, 4) = K . $J E YK.,,. We can now define the projection n : Y -+ Z by 
rr(K, (K, 4)) = K . J? E z. 

It is easy to verify that this construction is independent of the point p E Z. Then the 
following proposition [ 111 clarifies the role of the bundles of little-group orbits; see also 
Section 10. 

Proposition 3.1. There is a bijection between the set of bundles of little-group orbits and 
the set of coadjoint orbits qf G on g*. 

Consider now the coadjoint orbit (9: of v = (f, p) in R* and the corresponding fibre 
bundle of little-group orbits Y. This orbit is fibred over the K-orbit Z of the point p E V* 
andthefibreisoftheform(B$)4=Kq.h+qOV, q=~.peZ, h=K.fforKeK 
(relation (2.5)). Thus if y E (6:),, then there exists an element (A, u) E K, xP V such that 
y=h.h+qOvandsoi4*(y)=i4*(h.h+qOu)=i4*(h.h)=~.ii4*h~Y~.Itisclearthat 
the projection ii : f * -+ f G defines in fact a projection i; : (a$), -+ Y4 between the fibres 
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of 0: and Y. Furthermore, the fibre (i;)-’ (cp) for cp E Yq, is the orbit of the point q E V* 
under the action of the linear subgroup V c G. We have thus proved the lemma [ 1 I]: 

Lemma 3.2. The coadjoint orbit 0: of the element u = (f, p) E R* = t * $ V* is a jibre 
bundle over the bundle of little-group orbits whose typical$bre is the orbit of p E V* under 
the action of the subgroup V c G. 

We summarize the previous results in the commutative diagram 

Y= 

where l7 : 0’: + Z is the projection. 
We study finally the isotropy subgroup G, of the point u = (f, p) E CJ* with respect to the 

coadjoint action. Let 4 = if f and (KP)6 be the isotropy subgroup of 4 E fz with respect 
to the coadjoint action of KP on t T,. If (K, u) E G”, then K . p = p and K . f + p 0 u = f 
which means that K .r$ = q5 + K E (KP)+. We have thus an epimorphism j : G, + (Kp)++ 
given by j(~, u) = K. The kernel of j is calculated easily: ker j = {(K, v) E G,, ] j(~, u) = 

e} = ((e, u) E G,). But the element (e, u) belonging to G, is such that e . f + p 0 u = 
f =k p 0 ‘v = 0, thus ZI E ker r;. On the other hand, ker ri is a vector subgroup of G, as 
the inclusion map i : ker r; -+ G, given by i(v) = (e, v) indicates. 

We conclude that ker j = ker ri and we have the following exact sequence: 

0 - ker rp* -& G, & (KP)6 + e, (3.3) 

which gives us all the possible information about the structure of the isotropy subgroup G,. 
We note that G, is not in general equal to the semidirect product of (Kp)~ and ker r; 

because (Kp)+ is not in general a subgroup of G,. In fact, if it were, we would have 
(K, 0) E G, for each K E (KP)4. But in such a case we find K f -t p 0 0 = f + K E Kf, 
so ( KP)4 c Kf ; clearly this condition is not in general satisfied. 

Conversely now, the inclusion ( KP)6 c Kf induces a group monomorphism m : ( Kp)4 -+ 
G, given by m(K) = (K, 0) for in that case we have K . f + p 0 0 = f for each K E (KP)4. 
The following lemma is thus proved. 

Lemma 3.3. The inclusion (KP)q, c Kf is a necessary and su$kient condition for the 
isotropy subgroup G, to be the semidirect product (K,)q, x p ker ri. 
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4. Submanifolds - symplectic structure 

The coadjoint orbits of a semidirect product G = K xp V possess always two natural 
submanifolds: the K-orbit L = 0: of u E a* and the V-orbit N = 0: of the same element. 
We observe that in the case where KP c Kf, u = (f, p) E g*, the orbits L and Z are 
diffeomorphic: Z = K/KP and L = K/(KP n Kf) = K/K,. In this section we will study 
the submanifolds L and N as well as the symplectic structure of the coadjoint orbit 0:. 

Convention 4.1. If 6 is an element of a Lie algebra (I, then we denote by to* the fundamental 
vector field of the coadjoint action on g*: 

(Ca*)IL=C.II vI.LECl*. (4.1) 

Also, the symplectic structure we are using on a coadjoint orbit in R*, is given by: 

qL((C,*)jk (rl,*)/L) = --Pa<, rll)? 

where p is a point on the orbit. 

(4.2) 

For the case of the semidirect product in which we are interested, Eq. (4.2) takes the 
following form: if { = (A, a) and r] = (B, b), A, B E f , a, b E V, then 

w,((&,*),, (rla*)J = (A. h + 4 0 a)(B) + ~qGWb) 

ifp=(h,q)Eg*. 

(4.3) 

We find first for o E L and IZ E N, the tangent spaces To L and Tn N explicitly. Using the 
fact that L and N are homogeneous spaces of the groups K and V, respectively, we have 

ToL={(A.h,A.q)IA~f], o=(h,q)=(K,O).u~L (4.4) 

and 

T,,N = [(p 0 u, 0) I u E V) k’ im t* = f” P P’ n = (e, v) . u E N. (4.5) 

We observe here that the tangent space T,, N does not depend on the point n E N, in accor- 
dance with the affine plane structure of N = {(f + p 0 II, p) 1 v E V} = u + im ri x (0). 

In order to obtain now a characterization for the submanifolds L and N, we search for the 
orthogonal complements of the tangent spaces To L and T, N. We find easily, using relations 
(4.3) and (4.4) 

(T,L)’ = ((0, B . q) E TJf 1 B et , B . h E q 0 V}. (4.6) 

It is clear that generally, the orthogonal complement (To L)’ has no relation to the tangent 
space T,L. But in the case where f defines a cohomology class, [f] E H'(t , R), we have 
B ,f = 0 hence B . h = 0, VB E f , which implies, by (4.6) and (4.4), that 

(T,L)’ = T,L 

Thus the condition [f] s H’ (1, R) means that the submanifold L is Lagrangian. 
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We turn to the case of (T,N)‘. Easy calculation shows that 

(T,N)~ = {(B . (f + p o v) + p 0 b, 0) I B E f,, b E “1, 

which clearly leads to the inclusion T,, N c (T, N)‘. Thus the submanifold N is always an 
isotropic submanifold of the coadjoint orbit 0’:. 

When K, c Kf , N becomes aLagrangian submanifold. Indeed, the isomorphism T,, N 2 
f i implies that the dimensions of N and Z are equal; furthermore, if Kp c Kf ,I then the 
tangent spaces of N and L at u are complementary, so dim N + dim L = dim 0’: and 
Z~L=+dimZ=dimL;finally2dimN=dimO’~. 

We have now a useful characterization of the cotangent space T;Z, q E Z: 

Lemma 4.2. For each point q E Z, the cotangent space T; Z is naturally isomorphic to the 
quotient V/ ker r:. 

Proof It follows directly from the isomorphism TqZ z t /f q and Lemma 2.1. 0 

Using the previous lemma, one can investigate further the consequences of the condition 
KP c Kf on the structure of the coadjoint orbit Of, where u = (f, p) E R*. In fact, let 
I7:Of + Z be the projection and q E Z; then, by Eq. (2.9, one easily finds that for 
p = (h, q) E 0’2, the fibre n-‘(fl(p)) is of the form 

n-‘(q) = (h, q) +q 0 ” x 101. (4.7) 

Lemma 4.2 applied to the case KP c Kf, makes clear that 0’: is isomorphic (as a manifold) 
to the cotangent bundle T * Z when KP c Kf 

We make now the following remark concerning the bundle Y of little-group orbits, under 
the condition K, c Kf. If 4 = il; f (notation of Sections 2 and 3), the typical fibre of Y is 

YP = 02. It is immediate that for each K E K,, K . $I = ii(~ . f) = qb which implies that 
YP ,= [$J}; thus the fibre bundle Y and the orbit Z are isomorphic as manifolds. 

We study finally the case [f] E H’(f) R) and its consequences on the structure of the 
coadjoint orbit 0:. We use the following well-known property of the coadjoint action: 

Property 4.3. If f E f * defines a cohomology class, [f] E H’ (1, R), then the coadjoint 
orbit Q = OK is a manifold of dimension Zero. f 

In other words, the isotropy subgroup KS is at the same time open and closed in K; thus, 
using the previous discussion and relation (2.5) we find that the fibre bundle I7 : 0: + Z 
defines a covering space of the cotangent bundle T*Z. In particular, the bundle of little-group 
orbits is a covering space of the orbit Z. 

Let us summarize with the proposition: 

Proposition 4.4. The coadjoint orbit 0’: of a semidirect product G = K xP V, v = 
(f, p) E a*, possesses always two natural submanifolds L and N which have transversal 
intersection at v E L n N: L is the orbit of v under the action of K C G and N the orbit of 
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the same point under V c G. N is always an isotropic submanifold of the coadjoint orbit 
0:. 
1. Suppose that K, c Kf; then 

(a) the orbit Z is diffeomorphic to L and N is a Lagrangian submanifold; 
(b) the coadjoint orbit 0: is diffeomorphic to the cotangent bundle T * Z; 
(c) the bundle of little-group orbits Y and the orbit Z are identical. 

2. Suppose that f defines a cohomology class, [f ] E H’ (f , R); then 
(a) L and N are Lagrangian submanifolds of 6’:; 
(b) the orbit SF is a covering space of the cotangent bundle T*Z; 
(c) the bundle of little-group orbits Y is a covering space of the orbit Z. 

More generally, we can define a foliation F on the coadjoint orbit 6’: in the following 
way: if o = (h, q) = (K . f, K . p) E L, K E K, then we choose the leaf & as FO = 0’: = 
((h + q 0 u, q) 1 u E V). Then, using the techniques of Proposition 4.4, one easily proves: 

Proposition 4.5. The coadjoint orbit 0’: of a semidirect product G = K xp V, v = 
(f, p) E g*, possesses an isotropic foliation whose leafs are the afJine spaces 3* = 01, 
o E L (see Proposition 4.4). In the case where K, c Kf, the foliation 3 is Lagrangian. 

In view of Lemma 3.2, the following is immediate: 

Corollary 4.6. Thefoliation 3 of Proposition 4.5 is always regular and the quotient 0:/3 
is equal to the bundle of little-group orbits. 

We observe here the analogy with the cotangent bundle: in fact, if T*M is the cotangent 
bundle of a manifold M, then the fibres T,* M, m E M, define a Lagrangian foliation of T * M. 
We will clarify in what follows this similarity by direct calculation of the symplectic form 
w of the coadjoint orbit 0: in terms of the symplectic structures of T’Z and Q = Of”. 

Fixnowanelementv=(f,p)E(7*andleta:G+O~,at:G-+ Qandaz:G-+T*Z 
be the mappings defined by crt (K, u) = K . f, CT~(K, u) = (K . p, [v],.,) and o is simply the 
projection G -+ G/G,; [IJ],., means the equivalence class of u in the quotient V/ ker rz.p, 
according to Lemma 4.2. 

Theorem 4.7. The canonical symplectic structures w, WQ and 02 of S$, Q and T*Z, 
respectively, are related by the following equation: 

proof Let 52 = o;wQ + a;wz E fi2(G); fi is a closed 2-form. If t = (A, a), n = 
(B, b) E g, let also .$’ and 7’ be the corresponding right invariant vector fields on G. Then, 
easy calculation shows that 

fiK-‘, rlr) lg = q(B. (14. u + a>> - q(A. (B. u + b)) - h([A, BI) 
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if q = K . p, h = K . f and g = (K, u). On the other hand, the fact that 0: is the quotient 
G/G” implies directly TRa(t’(g)) = en*(k), p = a(g). By Convention 4.1 and relation 
(4.3) this means that rr*w is exactly n. 0 

Remark 4.8. It must be emphasized that the previous result is closely related to the choice 
of a point of 0: (here we choose the origin v of the orbit). In this sense, the splitting of the 
symplectic structure w of the coadjoint orbit is not canonical. 

5. Coadjoint orbits, modified cotangent bundles and coisotropic embeddings 

A cotangent bundle T*M equipped with the 2-form 6~ = WM + t*au, where WM = dt?M 
is the canonical symplectic form of T*M and au E L?*(M) is such that doa = 0, t : T*M -+ 
M, is called modified cotangent bundle. We denote the pair (T*M, OM + t*czg) by TflM, 
when cya is understood. The form ij, is always non-degenerate, as one readily verifies, so 
TttM is also a symplectic manifold. 

This notion is closely related to physical problems. As most important, we mention 
the phase space of a charged particle in general relativity, in the presence of an external 
electromagnetic field, e.g., [ 12,131 and the problem of localization of relativistic particles 
of mass zero [3]. In this section we will see that it is also useful in the geometry of the 
coadjoint orbits of a semidirect product. 

Consider an element v = (f, p) E t * @ V* with K/, c Kf. Then we know that the orbit Z 
forms a fibre bundle over Q with typical fibre K,f/K,, the orbit of p under K,f. In addition, 
if pr : Z + Q is the projection, pr(K p) = K f, the 2-form cru = pr*wQ E L?*(Z) is a 
presymplectic structure on Z. 

Proposition 5.1. If the element v = (f, p) E g* is such that K, c Kf, then there exists a 
global section s : Z + 0: of ll : 0: + Z such that s*w = ~0. Furthermore, ift : T*Z --f 
Z is the projection, then there exists a symplectomorphism between (Of, o) and TDZ = 
(T*Z, wz + t*ug). Howevel; this symplectomorphism is not canonical. 

Proo$ Define s : Z -+ a$ by S(K . p) = (K . f, K . p). The map s is well defined because if 
K.P = h.p,thenh = K.K’forK’E Kpandsos(h.p) = s(K.p).Clearly,wehaveflos = id, 
sosisasection.Itstangentatq = ~.pisgivenbyT,s(A.q) = (A.h, A.q) = (A, O),*(h, q) 
if h = K f; this makes clear that S*W = ou (see (4.3)). 

Now by Proposition 4.4 we have the diffeomorphism 0: 2 T*Z. Using the notation 
of Theorem 4.7 we observe that if D(K, v) = a(k., a), then h = K K’ for K’ E K, and 
u - u E ker rz.p. This means that there exist two well-defined mappings It : 0’: + Q 
and 12 : 0: + T*Z satisfying Zi 0 o = pi. i = 1, 2. Explicitly, if F is the element of 
n* given by relation (2.5), then It(p) = K . f and 12(w) = (K . p, [VI,.,). As a conse- 
quence, relation (4.8) reads w = ZTq + Zgwz because o* is a monomorphism. But It 
satisfies also Zl = pr 0 t o Z2 which gives w = Zl(wz + t*aa). Finally, it is elementary 
to verify that 12 is a diffeomorphism between 0’: and T*Z; this means that we have a 
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symplectomorphism between 0: and TflZ which is not canonical because it depends on 
the choice of a point v = (f, p) of the coadjoint orbit in question, for which the condition 
Kp c Kf is satisfied. 0 

We summarize our knowledge on the structure of 0’: when K, c Kf in the commutative 
diagram: 

But there exist additional properties of the coadjoint orbit 0: when K, c Kf. More 
precisely: 

Theorem 5.2. Let G = K xp V be a semidirect product and v = (f, p) E R* such that 
Kp c Kf. Then the reduction of 0: by the submanifold L of Proposition 4.4 is symplecto- 
morphic to the coadjoint orbit Q = KIKf . Furthermore, the dual E* of the characteristic 
distribution on L defines a symplectic manifold which is a vector bundle over Z and the 
zero section so : Z + E* is a coisotropic embedding of the presymplectic manifold Z. 

Proofi The section s is a diffeomorphism between Z and L and therefore defines a pre- 
symplectomorphisms : (Z, ~0) + (L, iLw),it, : L -+ 0: istheinclusion,becauses*izw = 
(iL o s)*w = cxwg. This ensures that the characteristic distribution E of iEw on L, E = 
TL n (TL)‘, is isomorphic to the kernel of au over Z. But if we reduce Z by kercua 
we obtain the coadjoint orbit K/Kf. Thus reduction of 0: by L gives the symplectic 
manifold Q. 

For the case we are studying, one easily finds that if o = (K . f, K . p) = (h, q) E L, 
then, see (4.6), T,L f’ (T,L)’ = ((0, A . q) I A E fh}. Thus, we conclude that the dual E* 
of the characteristic distribution E is a vector bundle over Z with typical fibre (f f /f P)*. 
Consider now a point x E E; let q = K . p be its projection on Z and h = K . f = pr(q). 
Then, by construction of E*, the tangent space TX E* admits the decomposition: TX E* = 
Th Q @ (fh/fq) @ @h/f,)*. This makes clear that there exists a symplectic structure OE* 

on E* given by (wE*)x(h + a1 + PI 3 t2 + a2 + 82) = @‘Q>h& 3 62) + Bl (a21 - B2(a1), 
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$i E Th Q, (Yi E (fh/fq), /Ii E (f h/f q)*, i = 1,2. Let now SO : Z -+ E* be the zero section 
and % = so(Z). Then each tangent vector u E TX% admits the decomposition v = q + y + 0, 
n E Th Q, y E (f h/fq). Consequently, the orthogonal complement of this tangent space will 
begiven by (TX%)’ = {O+a+0~ T,E* 1 cx E (fh/fq)} c TX%, whichcompletes theproof 
of the theorem. 0 

We make some comments on the somewhat peculiar condition Kp c Kf . In this way 
stated, this condition depends on a point (f, p) of the coadjoint orbit, but as one easily 
verifies, it implies that 

K.h-heimt4* VK E K, (5.1) 

for an arbitrary point (h, q) E 0’:. Now, condition (5.1) is equivalent to saying that all the 
little-group orbits are trivial because i; (K . h) = i;(h) VK E K4. Otherwise stated, condition 
Kp c Kf implies that the orbit Z coincides with the bundle of little-group orbits Y. 

The converse now is not in general true, that is the condition 

Z=Y 

does not in general implies the existence of an element (f, p) E 6’: such that Kp c Kf . Let 
us explain why. If Z = Y then condition (5.1) is valid, so given (h, q) E 0: and K E K4, we 
have K . h - h = q @ U(K), where v : K4 + V is such that its equivalence class [v] : K, + 
V/ ker r; belongs to Z’ ( K4, V/ ker r:). This is evident by direct calculation using the fact 
that ker r; is Kq-invariant, which induces a representation K4 + GL( V/ ker r;). If now 

there exists an element (h, q) E 0: such that H’ (K4, V/ ker r;) = 0, then we can find an 
element (f, p) of the same orbit with the property Kp c Kf . In fact, in this case we have 
always q 0 U(K) = q 0 (K . ug - ~0) for a fixed element vu E V. Choosing thus p = q and 
f = h - q 0 vg, we have the desired result. 

6. Pukanszky’s condition and the semidirect product 

Let us first state some definitions and results [3] about polarizations and Pukanszky’s 
condition that will be used in the sequel. 

Let G be a Lie group, B its Lie algebra and u an element of II*. Given a subspace a c g 

which contains the Lie algebra gU of the isotropy subgroup G, with respect to the coadjoint 
action, we define the symplectic orthogonal n1 by 

nl = (X E g ( u([X, Y]) = 0, VY E a). (6.1) 

If we note by gc the complexification of 9 and by (1’3~ H b E gc the complex conjugation, 
we may extend this notion immediately for subspaces of gc which contain g”, . 

We say now that the complex Lie subalgebra h of sc is a polarization with respect to 
v E g* if h contains &, is invariant under the adjoint action of G,, h1 = h and h + 6 is a 
Lie subalgebra of gC. Each algebraic polarization h corresponds to a G-invariant geometric 
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polarization F, the correspondence being given by [J . v = Fv c (TJl’f)c. The condition 
on the symplectic orthogonal h1 can be restated as follows: 

(6’ = 6) _ (dim& = i(dimO+dimg,,) and v([n,h]) = 0). (6.2) 

To each polarization 1~ we can associate two real Lie subalgebras h c c of 3 defined by 

h=hne and e=(I)+c)nn. (6.3) 

We denote also by DO c Eo the connected Lie subgroups of G whose Lie algebras are h and 
e, respectively. The conditions on the polarization [J ensure that the subsets D = Do G, c 
E = Eo . G, are subgroups of G. 

Lemma 6.1 [7]. (1) b’ = e; (2) the groups D and Do are closed Lie subgroups ofG with 
the same Lie algebra b; (3) i,“v is invariant under the coadjoint action of D; (4) E’ and 
v + co are invariant under the coadjoint action of the subgroup D; (5) if E is a Lie subgroup 
of G, then its Lie algebra is e. 

Pukanszky’s condition now, is a supplementary condition on the polarization 6. The 
following lemma gives three equivalent variants of this condition. 

Lemma 6.2 (Pukanszky’s condition, [3]). The following conditions are equivalent: (1) v + 
co c 0:; (2)D . v = v + e“; (3)D . v is closed in R*. 

Consider now the case where the Lie group G is a semidirect product, G = K xP V 
(notation of Section 2). Then, its Lie algebra is CJ = f ep V and the corresponding com- 
plexified Lie algebra nc = i”@,V’. We are interested in polarizations of gC (with respect 
to v E Q*) which are of the form h = n@,VC, n c f C. Although this type of polarization 
seems to be very special, it leads to quite interesting results as we shall see in the sequel. 

We examine first the restrictions imposed to the subspace n by the fact that lj is a polar- 
ization. We find successively: 
(1) h is a subalgebra of gc. Then, [ IJ, fj ] c lj which implies [n, n ]ep[ n, Vc ] c a@,, Vc. 

Thus, o must be a Lie subalgebra of f c. 
(2) 6’ = IJ. Equivalently, we have relation (6.2). By direct calculation of the dimensions 

appearing in (6.2), we obtain: dim clj = dim ,n+dim V and dim g+dim IJ” = 2 dim V+ 
dim f, + dim (f,,)@. Thus, 

dim cn = i (dim f p + dim (t p)4). (6.4) 

We have one more restriction coming from the condition u([ CJ, fi]) = 0. Indeed, using 
relations (4.2) and (4.3), this condition gives: A . p = 0 and A f + p Q a E a’, 
VA E n, a E Vc. But if this is the case, we haven c f i and since paa E (im ri)c = (f i)” 
(Lemma 2.1), for each a E Vc, we obtain necessarily A. f E a’, VA E a, or, f([ a, a]) = 
0. Taking into account relation (6.4) as well as the facts a c f i and f ([ a, n 1) = 0, we 
conclude that 0’ = ~1 (the symplectic orthogonal being taken with respect to 4 = i; f ). 
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(3) h is invariant under the adjoint action of G,. By Eq. (2.4) it is immediate that n must 
be invariant under the adjoint action of (Kp)b. 

(4) q + 6 is a Lie subalgebra of gc. Equivalently, it suffices to demand [h, 6 ] c lj + 6, 

because b is a Lie subalgebra of gc. But the last bracket is equal to [ a, 6 ] $ [ a + ii, V’]; 
thus we require only [ a, ii ] c u + ii, because the last two terms belong already to Vc. 

Conversely, suppose that a is a polarization off E (with respect to 4 = iz f). In that case, 
it is easy to reverse the previous reasonings and deduce that Q = a@,VC is a polarization 
(with respect to v) for the Lie algebra $ (see also [ 111). 

Proposition 6.3. Let G = K xP V be a semidirect product, v = (f, p) E R* = t *CBPV* 
an element of the dual of its Lie ulgebra and gU the isotropy subulgebru of v with respect 
to the coadjoint action. Then a subspuce f~ = a@,VC c 9’ is a polarization for the Lie 
algebra gc with respect to v if and only if n is a polarization off i with respect to 4 = ii f. 

Next, we show that an analogous phenomenon occurs with respect to the validity of 
Pukanszky’s condition. More precisely, the validity of Pukanszky’s condition for polariza- 
tions of a semidirect product G = K x P V described in Proposition 6.3, reduces to validity 
of the same condition for polarizations of the isotropy Lie subalgebra f p. 

Suppose that the polarization h = a@,,VC of gc satisfies Pukanszky’s condition. For 
the case of the semidirect product we are interested in, the (real) subalgebras b and e 
(see Eq. (6.3)) will be: b = IJ fl g = a n f ePV = pep V and e = ( f~ + c) fl a = 
( a + ii ) II f ep V = qtBP V. The connected Lie subgroup Do whose Lie algebra is equal to 
b is a semidirect product Do = Po xp V, where Pa is the closed, connected and simply 
connected subgroup of K, whose Lie algebra is p. The validity of Pukanszky’s condition 
for the polarization IJ implies the relation DO. v = v + e” (see Lemma 6.2(2)). Consider then 
theelementd =(A,v)~Doandletv=(f,p)aspreviously:d.v=(~.f+~.p~v,h.p). 
We know that the difference d . v - v must be contained in e’, so 

0.f - f +h.pOu)EqO (6.5) 

and 

(h . p - p) E V” = 0. 

It follows that h . p = p + k E Kp which is already satisfied because f , > p = a fl f > 

(t P)4 and Po is connected. Furthermore (A. f - f + p 0 v) E q’; but p c q c t, 3 p” > 

q”>f;andweobtainpOuEimri= ‘; c q’. Thus, we must have (A. f - f) E q’, or 
(h c# - 4) E $9”. 

As a result, the condition Do . v = v + e” (Pukanszky’s condition) implies PI-J . 4 = 
4 + i;q” which is exactly Pukanszky’s condition for the polarization n of f s because i;q” 

is the annihilator of q in f ,, . Finally, the previous analysis shows easily that the converse is 
also true, that is if the polarization a off E satisfies Pukanszky’s condition, then the same is 
true for the polarization h = n@, Vc of 11’. We have thus proved: 
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Theorem 6.4. Let b = nBp Vc be a polarization of the complexified Lie algebra gc of a 
semidirectproduct G = K x p V with respect to an element v = (f, p) E g*; equivalently 
n is a polarization oft i with respect to 4 = iB f. Then, b satisfies Pukanszb ‘s condition iJ 
and only zf n satisfies it as well. 

Scholium 6.5. The Lie algebra q of a semidirect product is a special case of extension of 
a Lie algebra t by an abelian Lie algebra V. The complex Lie subalgebra b studied in this 
section is also of this special type. But one can reconsider Proposition 6.3 and Theorem 6.4 
in the following way. Let qc = i”@,V’ and b c $1’ be a Lie subalgebra. If n is the image 
of the homomorphism qc + f C restricted to h, then o is a Lie subalgebra off C, see (2.2). 
In other words, 4 is an extension of n by a vector subspace of Vc, the kernel of t, + a. 
Considering now Lie subalgebras b which are extensions of Lie subalgebras of f ’ by Vc, 

O+VC--+~+n+O, (6.7) 

one easily verifies that Proposition 6.3 and Theorem 6.4 remain still valid if we replace 
simply lo = n@,VC by the exact sequence (6.7). Finally, we note that the corresponding 
geometric polarization belongs to the category of polarizations studied in [ 111. 

As an illustration, we then construct explicitly, for an arbitrary semidirect product, a po- 
larization “trivial” in some sense, which satisfies Pukanszky’s condition (making of course 
appropriate choices). Thanks to Proposition 6.3 and Theorem 6.4;it is sufficient to construct 
a polarization n of f p satisfying the same condition. 

Suppose that [f] ??H’(fp, IR) and let n = ci = fi. Clearly, a is a real subalgebra of fi, 
invariant under the adjoint action of the isotropy subgroup (Kp)+ which, in this case, is 
the union of connected components of Kp. Furthermore, 2 dim cn = 2 dim f p = dim f p + 
dim (f p)~, for (f ,,)4 = {A E f p 1 A .$ = 0) = f p and the Lie subalgebras p and q coincide: 
p = q = f,. Finally, the element 4 = i;f vanishes on all the brackets [A, B], for each 

A, B E t p, because we have always [f ] E H’ (f p, R). We deduce that n = fi is a (real) 
polarization of f p. 

Next, for each h E PO = (Kp)o we find: h cp = q5, so h . 4 = 4 + i;q" (here i;q” = 
i;‘i = 0 is the annihilator of f p in t i). 

Corollary 6.6. For each semidirect product G = K x p V, the coadjoint orbit of the ele- 
ment v = (f, p) E (J* with [f ] E H’ (t p, R) admits a realpolarization satisJjiing Pukanszky s 
condition. 

7. Symplectic induction 

We recall here the method of symplectic induction [5] which will be very important to 
a deeper geometrical investigation of the coadjoint orbits of semidirect products. More on 
this method can be found in [3]. Notice that the induction of Hamiltonian actions appears 
independently in [ 161. 
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Let (M, w) be a symplectic manifold and H a closed Lie subgroup of a Lie group G. 
Suppose we have a (left) Hamiltonian action @ : H x M -+ M which admits an equivariant 
momentum map J,+, : M + b*, where n is the Lie algebra of H. The aim of the symplectic 
induction method is to construct a symplectic manifold, denoted as Mind, on which the 
group G acts in a Hamiltonian way with equivariant momentum map .&d : Mind -+ g*, 
where Q is the Lie algebra of G. 

In order to construct the Hamiltonian space (Mind, Wind, G, Jind), we proceed as follows. 
Using the natural isomorphism T*G 2 G x Q* (obtained by identifying g* with the 
left-invariant l-forms on G), we obtain a left action 6 of H on 2 = M x T*G given by 

~h(m,g&.) = WAm),gh-%A, VhEH, (m,g,p)~M x T’*G. (7.1) 

This action is symplectic for the symplectic structure 6 = rr;w~ + n; d0c on k if 
rrt : k + M and n2 : A? --+ T*G are the projections: 6;; = cj; 6 is also proper because 
H is closed. Furthermore, it admits an equivariant momentum map J@ : 6 + fj* equal 
to Jti = ~7; JM + nl JH, where JH is the momentum map for the cotangent lift of the 
right action of H on G. If ib : fj L, g is the inclusion and it : g* + 6* the corresponding 
projection, then this momentum map is given by 

JH@, PU> = -ilp. 

The element 0 E n* is a regular value for the momentum map J; and so the quotient 

Mind = Ji’(O)/H will be a symplectic manifold (Marsden-Weinstein reduction). We 

call Mind induced symplectic manifold and we denote it by Ind$M; wind will denote the 
symplectic structure of Mind. 

In order to obtain a Hamiltonian action of G on Mind we let the group G act trivially on 
M; we consider also the canonical lift to T*G of the left multiplication on G. Then we have 
a Hamiltonian action of G on A? with equivariant momentum map j : G + g* given by 

j(m, g, P) = g. I-L. (7.2) 

This action commutes with the action of H on A? and leaves invariant the momentum map 
Jh, so a symplectic action of G is induced on Mind. Since the momentum map j is H- 
invariant, it descends as an equivariant momentum map Jind : Mind -+ g* for the action of 
G on Mind = IndgM. 

Proposition 7.1 [3]. The induced symplectic manifold Mind = Ind$ M is a fibre bundle 
over T’(G/ H) with typicalJibre the symplectic manifold M. Moreovel; the restriction of 
Wind to ajbre yields the original simplectic structure w,+t on M. 

Let us note here that the symplectic induction procedure can be carried out without using 
the trivialization of T*G, see [8]. 

If we perform now the symplectic induction for M = point, then the induced symplectic 
manifold is isomorphic as a manifold to T*(G/H); we can extend the isomorphism to the 
symplectic category if we modify the natural symplectic structure d&/H of T*(G/H) by 
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a “magnetic” term, that is by the pull-back of an appropriate closed 2-form /lo E 52* (G/H), 
[3]. Thus, the symplectic induction over a point leads to the modified cotangent bundle 
(T*(G/H), dOG/H + t*/?u), where t : T*(G/H) -+ G/H is the cotangent projection. 

8. The structure of coadjoint orbits 

We will use now the results of [3] on the structure of the coadjoint orbits endowed with 
a polarization satisfying Pukanszky’s condition in order to analyse further the structure of 
the semidirect product coadjoint orbits. 

Let us recall first the principal results of this article. If G is a Lie group, u E II* an element 
of the dual of its Lie algebra and h a polarization with respect to u, we have two real 
Lie subalgebras h and e of FI canonically associated to h (see relations (6.3)). If we define 
3 = (G x (u f e”))/D (for the property of the group D see Lemma 6. l), then _F is a vector 
subbundle of TD(G/D) with symplectic form w3 obtained by restriction of the symplectic 
form of Tfl(G/ 0); further, there is a symplectic action of G on .F admitting a momentum 
map J3 : F -+ g* which may be calculated via (7.2). 

Proposition 8.1. The following four conditions on the polarization are equivalent: 
(1) Pukanszky’s condition. 
(2) The momentum map J3 : 3 -+ $ is onto 0:. 
(3) The symplectic action of G on 3 is transitive. 
(4) J3 is a symplectomorphism between (3, ~03) and 0:. 

Proposition 8.2. If E is a closed subgroup of G and if Pukanszky ‘s condition is satisfied, 
then there exists a commutative diagram 

T*(G/D)* iv 

TD 

I 

with the following properties: 
(1) (iv, n,) is the identification of the coadjoint orbit 0: as a symplectic subbundle of 

T*(G/D) according to Proposition 8.1. 
(2) nE : 0: -+ T*(G/E) is afibre bundle whose Jibres together with the restricted sym- 

plectic form, are symplectomorphic to the (pseudo-)Kiihler space El D. 
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Consider now the case where the Lie group G is a semidirect product, G = K xp V 
and let h be a polarization of g* with respect to v = (f, p) E R*. We are always interested in 
polarizations of the form IJ = a@,, Vc satisfying Pukanszky’s condition. By Proposition 6.3, 
a is a polarization of f; with respect to #J = i;f. Furthermore, Pukanszky’s condition is 
equivalently satisfied by a. Applying Proposition 8.1, the following result is immediate: 

Corollary 8.3. A necessary and st@cient condition for the symplectic subbundle 3 = 
(G x (v + e”))/D c TD(G/D) to be symplectomorphic to the coadjoint orbit Cf, is that 
the symplectic subbundle 3p = ( Kp x ($ + iiq”>)/ P c Tn( Kp/ P) be symplectomorphic 

to the little-group coadjoint orbit 02. 

We determine now an equivalence class in the quotient 3 = (G x (v + e”))/D, given 
that e” = (q@,V)’ 2 q” C f * x (0) and that D is described by the exact sequence 

O--+V--!-+D&P+e. (8.1) 

Let (g, v + w) E G x (v + e”) and [(g, v + w)] be its equivalence class. We know that 3 
is an affine bundle associated to the principal fibre bundle G -+ G/D. So, it is sufficient 
to find the equivalence class [g]. But thanks to the exact sequence (8.1), we obtain [g] = 
g . D = [K] = K . P if g = (K, u) E G and we may write 3 = (K x (f + q”))/P. 
Furthermore, there is a canonical inclusion Kp/ P L-, K/P induced by the inclusion of the 
closed subgroup Kt, in K; we have so a projection T,*(K/P) + T,*(K,/P), for x = [K], 

K E Kp. 
Let us examine in more detail this projection of cotangent spaces. If we denote Te L, (p) c 

T,K as pK (recall that p = ni’lt), thenclearly T,(K/P) Y T,K/p, and T,*(K/P) Z pi c 
I:, the annihilator of pt. Similarly, Tx(Kp/P) Z T, Kp/p, and T,*(Kt,/P) is isomorphic 
to the space of elements of T* K, which vanish on pK. If TK i, : TK Kt, L-, TK K is the 
natural inclusion, we may write T,* ( Kp/ P) 2 ( TK ip)* pi . Now, the inclusion p c q implies 

qi c pi ; but qz and (TKip)*qi are the fibres of 3 2 0: and 3p 2 02, respectively, over 
x (see also Corollary 8.3). Thus, the fibres of 3p are obtained from those of 3 under the 
projections (TKip)*. Therefore: 

Corollary 8.4. Validity of Pukanszky ‘s condition for a polarization f~ = LI$~ Vc at v E (J* 
implies that the coadjoint orbit 0’: is symplectomorphic to the quotient 3 = (K x (f + 

KP q”))/ P and that the coadjoint orbit O@ is obtained by restricting 3 2 0’: to the closed 
subset K,/P c K/P andprojecting itsfibres by the naturalprojection between the corre- 
sponding cotangent bundles. 

Clearly, under the conditions of Proposition 8.2, the coadjoint orbit 02 has proper- 
ties analogous to those described in this proposition because, according to Theorem 6.4, 
Pukanszky’s condition on TV is equivalent to the same condition on the polarization n. 
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9. Connections and symplectic induction by semidirect products 

We consider in this section the problem of the arbitrary choice of the connection in 
the symplectic induction process, pointed out in [3]. This connection plays the role of a 
Yang-Mills potential in the more general geometrical interaction scheme due to Guillemin- 
Stemberg [4,14] and Weinstein [ 151. The symplectic induction is a special case of this model 
and the arbitrariness or not of the connection has been related to the localization of relativistic 
particles in [2,3]. 

We restrict our attention to the case where we have a principal fibre bundle rr : G -+ G/D, 
formed by a semidirect product G = K xp V and a closed subgroup D belonging to the 
set of extensions of the Lie subgroup P c K by the vector group V. In this case, the base 
space G/D is equal to K/P; we denote this quotient by .E. The following commutative 
diagram illustrates this situation. 

o- V * D + P -e 

0 + v :I_: *e 

G/D K/P = .E 

Let then y E 52’(G) 8 b be a connection on rr : G + G/D, where b, the Lie algebra 
of D, is an extension of the Lie algebra p by V. Set now g = (K, v) E G, h = (A, u) E D 
and 6 = (B, b) E h. Then, if Rh(g) = gh is the right action of D on G, by the defining 
properties of a connection form we must have Rly = Ad(h-‘) o y and yg@(g)) = c, 
where r is the fundamental vector field of the Lie algebra element c for the right action 
on G:r(g) = (E(K), K . b). Using the fact that the p-components of TRh and Ad@-‘) 
are T RA and Ad(h-t), respectively, we obtain immediately that the p-component a = 
(i” @ Tenl) o y of the pull-back of y under the inclusion i : K L, G is a connection l-form 
on K -+ K/P. 

Conversely, suppose that we have a connection a! E L”(K) 18 p on K + K/P, then, 
for each K E K, we have a horizontal subspace HK c T, K setting HK = ker cu,; HK is 
isomorphic to Tq C under the projection nP : K + C, q = x~(K) = [K]. If now g = 
(K, v) E G, one can define a subspace kg c T,G 2 TK K @ V, complementary to the 
vertical subspace at g and isomorphic also to TqE, q = rr(g) = [g] = [K]. In fact, if 
XEHK,letusdefineXEfigby 

X = (X, T,p(T, R,-I (X))v). (9.1) 
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We set for simplicity T,p (TK RK1 (X))v = R,- I X II. In order to prove that g defines a 
connection on n : G + z, it is sufficient to check if i is invariant under the right action 
of D on G. Taking h = (h, u) ED, we find: TRh(X) = (g, w), where _? = TRi(X) and 
w = T,p(X)u + R,-IX . II. But easy calculation shows that w = R(,,)-IZ . (K . u + u); 
consequently, T Rh (X) E ti$, which proves that H is indeed a connection. 

In order to calculate now the corresponding connection form y, we use the decomposition 
(Z, w) = (X+~(K), R,-I X.v+~.b) of anarbitrary tangent vectorat (K, v) into horizontal 
and vertical parts, (B , b) E b, X E keT cr, . Then y must satisfy y (Z, w) = (B, b) and if we 
decompose y as y = (yt , A), then yi = n;a and A E R’(G) @I V is given by 

A(,,,,(Z, W) = K-’ . (w - R,-I X . u). (9.2) 

We have thus proved: 

Proposition 9.1. If y E Q ’ (G) @ h is a connection form on the principal bundle G + 
G/D, then a = (i* @ T,nl) o y, the p-component of the pull-back of y under the inclusion 
i : K L-, G, is a connection form on n : K + _?2. Furthermore, a connection a, E R’ (K) B&J 
determines a preferred connection y E C?’ (G) ~3 b. Indeed, y is equal to (nTa, A), where 
A is given by Eq. (9.2) and the horizontal spaces defined by y are given by Eq. (9.1). 

Remark 9.2. Suppose that G and D are such that we can apply symplectic induction 
from a point ua E b*. Then we know [3] that ya = vu o y is a l-form invariant on the 
fibres of n and therefore, there exists a 2-form @a E Q2(C) such that jr*/30 = dye. This 
2-form gives the modification term of the canonical symplectic structure of the cotangent 
bundle T*(G/D) = T*JC. Now if there exists a canonical connection IY E Q’(K) @ p, 
then we may choose y in a natural way according to Proposition 9.1 and so PO is also 
canonical. 

We examine now a special case where the choice of the connection y is guided by 
supplementary geometrical structures (so we have a canonical connection). The following 
proposition explains then a result of [2] concerning the localization procedure of relativistic 
particles with non-zero mass. This is precisely the case of massive Poincare coadjoint orbits 
(the hyperboloid m = const. > 0 is a symmetric space unlike the massless case where the 
light cone is not). 

Proposition 9.3. Let G = K xp V be a semidirect product, 9 = f ep V its Lie algebra 
and v = (f, p) E g*. Suppose there exists a polarization a of the complexi$ed Lie algebra 
‘i satisfying Pukanszky’s condition and K,IP and Z = K/K, are symmetric spaces, 
where P is the closed subgroup of Kp determined by a (Lemma 6.1). Then the coadjoint 
orbit 0: is symplectomorphic to a symplectic subbundle of a modiJied cotangent bundle 
(Proposition 8.1) whose symplectic structure is canonical. 

Proof The only thing we have to prove is that the modified symplectic structure of the cotan- 
gent bundle T* (G/ D) is canonical or, equivalently, that the connection form (Y is canonical. 
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Since K,/P and Z = K/K, are symmetric spaces, there exist involutive automorphisms 
Ip : K, -+ Kp and I : K + K defining the canonical symmetric space decompositions 
t, = p @ m and f = f, @ n, where m and n are the subspaces of f, and f , respectively, 
corresponding to the eigenvalue - 1 of Te Ip and T, I. 

Using the known property Ad(P)m c nr and Ad(Kp)n c n of these subspaces, we 
obtain a canonical decomposition f = f, @ n = p $ (m @ n) with the same property: 
Ad(P)(m @ n) c m @ n. By the invariant connection theory [6], there exists on the 
principal fibre bundle nl, : K -+ C a canonical K-invariant connection because we have a 
subspace m @ n c f invariant under the adjoint action of P and such that f = p @ (m @ n). 
Then Proposition 9.1 and Remark 9.2 finish the proof. 0 

Consider finally the special case Kp c Kf (+ Y = Z). Then, Propositions 8.1 and 9.1 
can be used in order to consider the result of Proposition 5.1 from another point of view. 
Indeed, in that case we have [ f , f p ] c ker f, in particular, [f] E H’ (f p, IF!). We can thus 
apply Corollary 6.6 and conclude that Q = f icBp Vc is a real polarization of gc, satisfying 
Pukanszky’s condition. Now, P = Kp and C = Z. But for the case of real polarizations, the 
content of Proposition 8.1 is essentially that the coadjoint orbit in question is isomorphic to 
a modified cotangent bundle (T*E, d0c + t*Bo) (see [3, Remark 3. lo]). Now, according to 
Proposition 9.1 and Remark 9.2, the choice of a connection a E 52 ’ (K) @f p on K + K/P 
determines this 2-form completely. The connection a! in turn is determined if we fix a 
subspace n c t such that f p 63 n = f and Ad(K,)n = n. Then, CX! is the fp-component 
of the Maurer-Cartan form on K. It must be emphasized here that, the 2-form (110 E D2(Z) 
appearing in Proposition 5.1 and giving the modification term of the symplectic structure 
of T* Z depends on the point (f, p) of the coadjoint orbit for which K, c Kf On the other 
hand, we have just seen that the 2-form /30 E Q2(C) depends on the choice of a connection 
on the principal bundle G -+ G/D. Thus the differential forms CQ and Do are not canonical 
and in general a0 # PO. But in any case, Proposition 8.1 tells us that the symplectic structures 
wz + t*ao and WC + r*& are equivalent, that is, there exists a bijection T*Z + T*E 
which is a symplectomorphism with respect to these structures. 

10. Symplectic induction and semidirect product 

We have seen previously (Proposition 8.1) that the validity of Pukanszky’s condition for 
a polarization of the coadjoint orbit 0: is equivalent to the fact that this orbit is symplecto- 
morphic to a subbundle of a modified cotangent bundle, obtained by symplectic induction 
from a point. In this section we will discuss a more general property of the coadjoint orbits 
of a semidirect product. See [8] for an equivalent approach. 

We state now the principal result of this section. 

Theorem 10.1. The coadjoint orbit 0: through v = (f, p) E Q* of a semidirect product 

G = K x,, V is always obtained by symplectic induction from the coadjoint orbit Oc of 
G, passing through up = (i; f, p) E q6, with groups G = K xp V and G, = K, xp V: 
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0; = Ind& (02). 

Note that 02 = G, ’ up is canonically isomorphic to 02 = KP ‘4. 

Proo$ Using the notation of the section on symplectic induction, let us choose the sym- 
plectic manifold M as M = G, . vp and the groups G and H as G = K xp V and 
H = KP x,, V = G,. We will then apply symplectic induction from M with the above 
mentioned groups. 

In our case, one can consider the symplectic manifold M as the coadjoint orbit of Kp 
passing through4, because (K, I)>-(#, p) = (K-c,b-ti~(pOv), p) = (K.@, p), V(K, v) E G,, 

since ii(p 0 v) = 0 (see Lemma 2.1). The action of G, on M is Hamiltonian with 
momentum mapping JM : M + gT, given by Jo = m, m = (K .$. p). 

Using the conventions of Section 7, one readily verifies that the zero level set of the 
momentum map Jk : k = M x T*G -+ tj = gp is given by 

J$O) = I((bo, p),g, (2,~)) 6 M x T*Glp = i;z, w = p,g~ G), 

and knowing that 40 = K .4 = K . i;f = i;(K . f) for some K E K,, we have the following 

characterization for Ji’ (0): 

.$(O) = {((K . $7 p>, g, (K . f + P 0 u, p)) 1 K E Kp, g E G, TV E VI 

Then direct calculation shows that the point ((K . 4, p), g, (K . f + p 0 u, p)) of J;‘(O) 

can be represented in the quotient Jil (0)/G, by the point (k . (K f + p 0 v) + q 0 6, q) 
if g = (k, i?), where q represents g in G/G, = Z: q = i? . p. We realize thus easily that 
the points of the induced manifold Mind = Ind$G, . vP) = Ji’(O)/G, will be of the 

form (A . f + h . p 0 u, k . p), J. E K, u E V, so Mind and 0: are isomorphic as manifolds. 
In order to establish a symplectomorphism between Mind and a:, we proceed as follows. 

The left action of G on 2, obtained by taking the cotangent lift of the left action of G on 
itself and letting G act trivially on M, projects on Mind LZ 0: as the coadjoint action of 
G, as one verifies by easy calculation. We choose now an element go = (~0, uo) E G and 
let no = ((4, p), (Kg, VI)), (f, p)) E Jil (0). The image Of no in Mind k equal t0 (Kg . f + 
KO . p 0 ~0, KO . p) = (h, q). Furthermore, the projection of a vector at no induced by the 
action of G on 2 will coincide with the corresponding vector at (h, q) E Mind induced by 
the coadjoint action of G on Mind. So, consider an element c = (A, a) E R; then ~~((no) = 

((O,O), T,R,,(<), 640)) and [Ci(no)l = &*(h, 4). Simihuly, if n = (B, b) E B, then 

(Wind)(h.q)(&*t rig*) = -(ft p)([TL, I oT&(A,a), TQ oT&,(B, b)l) 

= 4, q)([(A, a), (B, b)l). 

This shows that Wind coincides with the standard symplectic structure of the coadjoint orbit 
a:. 0 

We observe here the following analogy with the construction of Rawnsley [ 111, described 
in Section 3. According to Lemma 3.2, we have the fibration 6’: + Y + Z, where the 
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typical fibres are, respectively, p 0 V and 02. But now Theorems 7.1 and IO. 1 ensure that 

we have indeed a (non-canonical) fibration 0: + T* Z, with typical fibre 02. 

Remark 10.2. It is evident that if Z is a contractible space, then the coadjoint orbit 0’: 

is globally diffeomorphic to the product T*Z x OK” 4 In particular, when KP is a group- 
deformation retract of K, that is when there exists a homotopy H : [0, l] x K -+ K with the 
properties H(0, K) = ip(r(~)), H(l, K) = K andHC(Kk) = Hr(~)Ht(h), Ht(~) = H(t, K), 

then Z is contractible; a homotopy 6 : [0, I] x Z + Z between the constant map and the 
identity on Z, is given by H(t, [K]) = [H(t, K)]. 

As an immediate application of Theorem 10.1, we discuss in the light of symplectic induc- 

tion the result of Proposition 5.1. If KP c Kf , then 02 = (4) and the coadjoint orbit of u is 
hence obtained by symplectic induction from a point. Thus, according to Proposition 2.11 of 
[3] det, 0’: must be isomorphic to a modified cotangent bundle Tp(G/GP) = T”Z, where 
the modification term is determined by a connection on the principal bundle G -+ G/G,, 
in accordance with Proposition 5.1. The choice of this connection has been discussed in 
Section 9. 

11. Examples 

We consider here three representative examples of semidirect product and we apply the 
general formalism developed in the previous sections. The semidirect product Lie groups 
we analyse below, are important for the non-relativistic particle dynamics. 

Il. 1. The special Euclidean group of R3 

Let K = SO(3) be the Lie group of rotations in V = R3 preserving the standard scalar 
product (-, -) : R3 x R3 + R. The familiar representation of the elements of SO(3) as 
3 x 3 matrices, enables us to form the semidirect product G = SE(3) = SO(3)rxR3, the 
Euclidean group in lR3. 

The Lie algebra Ge(3) as well as its dual se(3)* are canonically isomorphic to R3 @ R3. 
Easy calculation shows that if p E V* 2 R3, then the linear map ri : V = R3 + f * 2 R3 
is given by T;(V) = p x u (the usual cross product of the vector space R3). 

Now let u = (f, p) E se(3)* be an element such that f = SU, p = ku and (u, U) = 1 
(s, k > 0). Then K,, = Kf = (K,)b g SO(2), the orbits Z and Q are 2-spheres S* 

and 0: = (4). We can furthermore apply Propositions 4.4 and 5.1 which show that the 

coadjoint orbit of u coincides as a manifold to T*S*, but its symplectic structure is modified 
by a “spin term” which, in this case, is s-times the canonical symplectic structure of S* (its 
volume element). 

Taking into account the discussion after Proposition 9.3, we can reconsider this result 
in the context of algebraic polarizations: since [f] E H’ (fp, R) (fp = GO(~) is an abelian 
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Lie algebra), Corollary 6.6 can be applied: therefore, the subspace n = ~(2)~ is a real 
polarization of f i = $0(2)’ satisfying Pukanszky’s condition, so 

Q = sIJ(2)c @ (Iw 3c ) 

is a real polarization of 0’ (with respect to u) satisfying also the same condition (see also 
Proposition 6.3 and Theorem 6.4). Then Proposition 8.1 gives the same result on the structure 
of 0:. Alternatively, one could use Theorem 10.1 (see discussion after Remark 10.2). 

For this polarization, the groups D and E coincide with G, = S0(2)~[w~. Furthermore, 
there exists a canonical connection on the principal bundle G + G, because the spaces 
Kp/P = point and K/K, = S2 are symmetric spaces (see Proposition 9.3). 

11.2. The Galilei group of [w3 $ [w 

Take now as group K the Lie group SE(3) of the previous example, K = SO(3)ptIw3 
and the vector space V as [w3 @ [w (Galilean space-time). We have a representation p : K -+ 
GL(V) given by 

and consequently one can consider the semidirect product G = KDC V. We recognize G as 
the Galilei group in dimension 3 + 1, see [ 131. 

Using the isomorphism 0 z R* Y (rW3 @ lR3) @ (Iw3 $ K!), we may represent the elements 
f~f*andp~V*asf = (Z,g),Z,gE[W3andp = (p,E),pE[W3,EclQ.Underthese 
identifications, if we set K = (R, b) E SE(3) and x = (r) E [w3 x [w, one readily finds: 

p 0 x = @ x r,pt) and K p = (Rp, E - (Rp, b)). (11.1) 

(i) Let us choose u = (f, p) E g* as f = (su, 0), p = (ku, E), s, k > 0, (u, u) = 1. 
This choice corresponds to the standard non-relativistic particle of mass zero with spin s 
and colour k, see [ 131. 

By formula (11.1) one easily finds Kp = SO(2)rxR2, [w2 being the subspace perpen- 
dicular to u and SO(2) the rotation group of this subspace. In this case, only the GO(~)*- 

component of 4 = ii,f E ‘i is non-zero and consequently, 0’# Kp isacoadjointorbitofSO(2); 

SOOgK” = (@} because SO(2) is abelian. Furthermore, the homogeneous space Z = K/K, 

is simply the product S2 x iT& Thus, according to Theorem IO. 1 (see also discussion after 
Remark 10.2), the coadjoint orbit of u is symplectomorphic to a modified cotangent bundle 
Tfi(K/Kp) = TPS2 x [w2. 

One can obtain the same result using the technique of polarizations. Indeed, with the 
previous choices, we have [f] E H’(f,, [w) (because SO(2) is abelian) and so Corollary 6.6 
can be applied. The real polarization h provided by this corollary is 

n = (50(2)c @ (rw2)“) @ (rw3 @ [WY 
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and the groups D and E 

D = E = (SO(~)D&)D~[W~ x Iw). 

Then, according to Proposition 8.2, thecoadjoint orbit 0: is symplectomorphic to a modified 
cotangent bundle Tn(K/K,) = T%i2 x R2. 

(ii) We choose now an element u = (f, p) E (I* setting p = (p, 0), (p,p) = 1 and 
f = (0,g) with (g,p) = 0 and (g,g) = 1. The coadjoint orbit of u has a less evident 
interpretation; according to [4], it corresponds to “particles at infinity with infinite velocity 
and mass zero”. 

Now, by Eq. (11.1) we find K, = SO(2)o<[w2, where R2 is the two-dimensional sub- 
space of R3 perpendicular to the line Rp and SO(2) the special orthogonal group of this 
subspace. On the other hand, the projection 4 = i,Tf is equal to f and we readily obtain 
(K,)@ = (e}xlWg. Furthermore, ker r; = Rp, as one can see from (11.1). Thus, the 
isotropy subgroup G, is two-dimensional and the orbit 0’: will be eight-dimensional. In- 
deed, as in the previous example, the orbit 2 = K/ KP is the product S2 x R and by Theorem 
10.1, the coadjoint orbit of u can be identified (in a non-canonical way) with a fibre bundle 

over T*Z = T*S2 x [w2 whose typical fibre is 0’2 = Kpl(Kp)$ & T*S’ Y S’ x IF!. 
However, we can further investigate the structure of this orbit as follows. Observe first 

that the subspace a = (0 @ R2)’ c fi is a real polarization with respect to $. In fact, 
(f p)G c a, a is invariant under the adjoint action of (Kp)4 (see relation (2.4)), dim ca = 

~(dimfp+dim(~p)~)and[n,a]=O.Inthiscaseh=e=0~[W2andD=E=(e}rxR2. 
As a result, D .$ = (R, g) = 4 + co, which means that a satisfies Pukanszky’s condition. 
By Theorem 6.4, the subspace 

IJ = a $ Vc = (0 @ [w2)’ @ (rW3 @ rW>” C $ 

is a real polarization of (1’ (with respect to u) satisfying also Pukanszky’s condition. Then 
Proposition 8.2, applied for a real polarization, tells us that the coadjoint orbit 0: is 
symplectomorphic to a modified cotangent bundle T”(G/D) g T”(SO(3) x rW>. In par- 
ticular, 0’: ZZ SO(3) x @ as a manifold. 

11.3. The Bargmann group of [w3 8 [w 

Consider again the special euclidean group SE(3) of R3 and let p : SE(3) + GE@‘) 
be the representation given by 

p(R,b) = (-3, _5,, 8). 

The semidirect product G = SE (3) xp lR5 is called Bargmann group and it is a non-trivial 
extension of the Galilei group, previously studied, by R, see [l]. If we write an element 
p E R5 as p = (p, E, m) and K = (R, b) E K = SE(3), we find easily 
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b2 
K.p= Rp+mb,E-{Rp,b)-m-i-,m (11.2) 

Let us consider the coadjoint orbit of the element u = (f, p) E g* with f = (SU, 0) and 
p = (0, 0, m), m > 0, s and u as above. Easy calculation using (11.2) shows that KP = 
SO(3)t><{O) and consequently the projection i; : f * -+ ff is simply the projection on to the 

first factor, i;f = 4 = su. Now the orbit Z = K/K, is simply Z = [w3 and 02 r S2, thus 

by Remark 10.2 the coadjoint orbit 0: of u is diffeomorphic to the product T*[W3 x S2. 
We recognize here the phase space of non-relativistic particles of mass m and spin s [ 131. 

One could also investigate the structure of 0: using the technique of algebraic polariza- 
tions. To this end, one proceeds as follows. Consider the subspaces 

of fi = a(3)‘, where A w a is the natural isomorphism GO(~)’ Y (rW3)c. These subspaces 
have complex dimension 1 and are such that do+ @ no $ (tp)s = fi. Furthermore, it is 

elementary to verify that [ no+, C-I: ] c (f p)z and [ nof , (t p)$] c no+ (similarly for ni). Thus, 
if we set 

cl* = a; @ (f&Y 

we obtain two (isomorphic) complex subalgebras of f i such that complex conjugation on 
the one yields the other. This means that n* are (isomorphic) complex polarizations of 
1; with respect to 4 = su. The real Lie subalgebras h and c of 1, are easily found to be 
h = (tp)# = ~c(2) and e = 1, = GO(~). It is then evident that D . #J = C$ and so n* satisfy 
Pukanszky’s condition because co = 0. As a result, the subalgebras 

l)* = n*@&c 

of gc are complex polarizations satisfying Pukanszky’s condition. Therefore, by Proposition 
8.2 we conclude that the coadjoint orbit 0: is a fibre bundle over T*(G/E) = T*[W3 with 
typical fibre E/D = S2. 
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